On Solvable Quintics $X^5+aX+b$ and $X^5+aX^2+b$

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On nilpotent and solvable polygroups

Applications of hypergroups have mainly appeared in special subclasses. One of the important subclasses is the class of polygroups. In this paper, we study the notions of nilpotent and solvable polygroups by using the notion of heart of polygroups. In particular, we give a necessary and sufficient condition between nilpotent (solvable) polygroups and fundamental groups.

متن کامل

On Hermite’s Invariant for Binary Quintics

Let H ⊆ P5 denote the hypersurface of binary quintics in involution, with defining equation given by the Hermite invariant H. In §2 we find the singular locus of H, and show that it is a complete intersection of a linear covariant of quintics. In §3 we show that the projective dual of H can be canonically identified with itself via an involution. The Jacobian ideal of H is shown to be perfect o...

متن کامل

on nilpotent and solvable polygroups

applications of hypergroups have mainly appeared in special subclasses. one of the important subclasses is the class of polygroups. in this paper, we study the notions of nilpotent and solvable polygroups by using the notion of heart of polygroups. in particular, we give a necessary and sufficient condition between nilpotent (solvable) polygroups and fundamental groups.

متن کامل

Quintics with Finite Simple Symmetries

We construct all quintic invariants in five variables with simple NonAbelian finite symmetry groups. These define Calabi-Yau three-folds which are left invariant by the action of A5, A6 or PSL2(11). E-mail: [email protected] E-mail: [email protected]

متن کامل

On the zeta function of a family of quintics

In this article, we give a proof of the link between the zeta function of two families of hypergeometric curves and the zeta function of a family of quintics that was observed numerically by Candelas, de la Ossa, and Rodriguez Villegas. The method we use is based on formulas of Koblitz and various Gauss sums identities; it does not give any geometric information on the link.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 1996

ISSN: 0035-7596

DOI: 10.1216/rmjm/1181072083